Maths - Trigonometry
Maths - Trigonometry
Maths - Trigonometry
please wait loading...........
- (1 - sin²θ)sec²θ =
- 0
- 1
- tan²θ
- cos²θ
- (1 + tan²θ)sin²θ =
- sin²θ
- cos²θ
- tan²θ
- cot²θ
- (1 - cos²θ)(1 + cot²θ)
- sin²θ
- 0
- 1
- tan²θ
- sin(90° - θ)cosθ + cos(90° - θ)sinθ
- 1
- 0
- 2
- -1
- 1 - sin²θ / 1 +cosθ
- cosθ
- tanθ
- cotθ
- cosecθ
- cos4x - sin4x =
- 2sin²∂x - 1
- 2cos²x - 1
- 1 + 2sin²x
- 1 - 2cos²x
- If tanθ = a / x then the value of , x / √a² + x² =
- cosθ
- sinθ
- cosecθ
- secθ
- If x = asecθ , y = btanθ then the value of x² / a² - y² / b&sub2; =
- 1
- -1
- tan²θ
- cosec²θ
- secθ / cotθ + tanθ =
- cotθ
- tanθ
- sinθ
- - cotθ
- sin(90° - θ)sinθ / tanθ + cos(90° - θ)cosθ / cotθ =
- tanθ
- 1
- - 1
- sinθ
- In the adjoining figure, , AC =
- 25மீ
- 25√மீ
- 25 / √3 மீ
- 25 radic;2 மீ
- In the adjoining figure, ∠ABC =
- 45°
- 30°
- 60°
- 50°
- A man is 28.5 m away from a tower. His eye level above the ground is 1.5 m. The angle of elevation of the tower from his eyes is 45°. Then the height of the tower is
- 30மீ
- 27 . 5மீ
- 28 . 5 மீ
- 27மீ
- In the adjoining figuresinθ = 15 / 17 Then, BC =
- 85மீ
- 65மீ
- 95மீ
- 75மீ
- (1 + tan²θ) (1 - sinθ) (1 + sinθ) =
- cos²θ - sin²θ
- sin²θ - cos²θ
- sin²θ + cos²θ
- 0
- (1 + cot²θ) (1 - cosθ) (1 + cosθ)
- tan²θ - sec²θ
- sin²θ - cos²θ
- sec²θ - tan²θ
- cos²θ - sin²θ
- (cos²θ - 1) (cot²θ + 1) + 1 =
- 1
- - 1
- 2
- 0
- 1 + tan²θ / 1 + cot²θ =
- cos²θ
- tan²θ
- sin²θ
- cot²θ
- sin²θ + 1 / 1 + tan²θ =
- cosec²θ + cot²θ
- cosec²θ - cot²θ
- cot²θ + cosec²θ
- sin²θ + cos²θ
- 9 tan²θ - 9 sec²θ =
- 1
- 0
- 9
- - 9
No comments:
Post a Comment